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We present a method for numerically solving a certain class of integral equations. 
We demonstrate that the technique is directly applicable to equations which have 
kernels with a particular type of singularity. We also show that this scheme allows one 
to find the unknown function directly, at any desired value of the argument, without 
resorting to interpolation. To illustrate the method, we apply it to an integral equation 
which arises in the theory of intrinsic viscosity of macromolecules. This equation has been 
dealt with elsewhere, and we compare our results to those already published. 

I. INTRODUCTION 

In this paper, we present a method for obtaining a numerical solution to an 
integral equation. It is applicable to equations in which the kernel satisfies 

$5 (x - u) K(x, y) = constant. (1) 

We will consider two classes of kernels of the form K(x - y). If the constant in 
Eq. (1) is zero, we call this a weak singularity. A strong (pole-type) singularity, 
such as might arise in integral equations obtained from dispersion relations, would 
yield a nonzero constant in Eq. (1). In this first paper, we consider weakly singular 
kernels. 

Other techniques for solving weakly singular integral equations have been 
presented by Schhtt [l], Ullman [2], Ullman and Ullman [3], and Bellman et al. [4]. 
A weakly singular integral equation of this type arises in the theory of intrinsic 
viscosity developed by Kirkwood and Riseman [5]. This is the equation treated 
by Schlitt in [l]. We consider this equation as an illustrative example, comparing 
our results to those obtained by Schlitt. We also solve the equation using Ullman’s 
technique [2] and compare these results to our own. For large values of a parameter 
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in the equation, an analytic first approximation can be obtained. Our results are 
also compared to this analytic form. Corrections to this first approximation are 
also discussed. 

II. NUMERICAL SOLUTIONS 

We consider the one-dimensional integral equation 

with f(x) and K(x - y) known functions. There is a wide class of problems in 
physics, with kernels of this form, in which the limit a is finite, and b is either finite 
or infinite. In both instances, one can easily show that the integral equation can 
be cast into the form 

#(z) = g(z) + A’ 1: K(z - w) i/(w) dw. 

If both a and b are finite, 

x = a + (b - a)(1 + z)/2; w = d(x) (44 

transforms Eq. (2) into the form of Eq. (3). If b is infinite, 

x = 2a/(l + z); VW = (44 4(x> (4b) 

yields the stated form for #(z). If a = 0, a simple translation preceding the trans- 
formation of Eq. (4b) yields the desired equation for 4(z). Thus, to study this class 
of integral equations, we need only consider 

&d = f(x) + x l;l f+ - Y> d(Y) dY- (5) 

The usual method for solving an integral equation of the form 

is to approximate the integral by a sum over quadrature points. Applying this to 
Eq. (6a), one would obtain 



SINGULAR INTEGRAL EQUATIONS 313 

where wj and yj are the weights and abscissas of some quadrature. Evaluating x 
at each yi yields a matrix equation 

j=l 

where & = $(vJ, h -f(vA and Kij = K(yi , yj). The value of d(x) at each 
quadrature point can then be obtained by straightforward matrix inversion. 

One disadvantage to this standard method is that one is restricted to finding 4 
directly, only at the values of the quadrature abscissas, yi . To find 4 at other 
values of y, one must interpolate, or create a new quadrature, containing the desired 
new points as quadrature abscissas.l 

A more serious problem arises if K(x, y) becomes infinite for some values of x 
and y. Then, this direct method leads to infinite entries in the matrix, and the method 
can no longer be used. In the treatment that follows, we will deal with kernels of 
the form K(x - y) which are singular (infinite) when x = y. 

III. SOLUTIONS FOR WEAKLY SINGULAR KERNELS 

For kernels with weak singularities, Ullman [2] has devised a technique which 
treats Kii as if it were nonsingular when Kf co. The elements of the kernel 
matrix that would be infinite are replaced by 

I 
Y,+wil2 

K(x, YJ dx* 
Y/4fl2 

This integrated form of K(x, y) is no longer infinite. 
The method used by many authors, and applied to this problem by Schlitt [l] 

(and henceforth called Schlitt’s method), subtracts the unknown function at the 
singularity. That is, the integral equation in (6a) is rewritten: 

W = f(x> + h j;l W, Y>[~J(Y> - WI 4 + W> j”LI KG, v> 4. 

Assuming d(y) has a Taylor expansion around y = X, 

$5 KG, Y>[$(Y> - WI = 0, 

and St1 K(x, y) dy is finite. Thus, with the above manipulations, both the Ullman 
and Schlitt methods yield finite matrices, and a matrix inversion technique is used. 

1 The technique we propose, eliminates the need for either of these procedures. Our scheme 
allows one to insert any desired point into an already existing data set. 
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Our method involves writing the integral of Eq. (5) as a sum over small intervals. 
With K(x, y) = K(x - y) we write 

We now write 4(y) as 

4(Y) = F,(Y) 9(YA 0, < y < ej+l . 

As before, yj is a point in the set of abscissas at which rj is to be found. The 
functions Fj( y) are chosen to try to fit 4(y) in the interval [Sj , 8,+,]. The simplest 
choice for Fj(y) is 

ej < Y < ej+l, 
otherwise. 

That is,2 d(Y) N 4(Yj) = constant for f?, < y < ej+l. Thus, the integral in 
Eq. (7) becomes 

rJj JeY” K(x - y) dy. 
f 

Since the integral itself is never approximated by a sum, there is no need to choose 
a particular set of points (like the points in a set of quadrature abscissa) in this 
development. 

If we now set x equal to each yi in the chosen set of points, and use Eqs. @a) 
and (8b), Eq. (7) becomes 

where 4i and fi are as previously defined, and 

Lij z Jej+l K(Yi - Y) dY. 
ej 

Since K(x - y) has a weak singularity, Lij is finite for all i and j. 

w-0 

2 To insure the continuity of 4, one could choose a more complicated function F,(.Y) which 
satisfies fi(b+&h = Ff+l(b+lMj+~ . 
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As a concrete example, we consider an integral equation derived by Kirkwood 
and Riseman [5] in the theory of intrinsic viscosity; namely, 

(11) 

As in [l], we will takef(x) = x2 and LX = $. 
Using a 20-point Gauss-Legendre quadrature, we obtain a numerical solution 

to this equation for four values of X; namely, X = 0.5, 5, 20, and 200, as in [l]. 
We compare these results to those obtained using Schlitt’s method and Ullman’s 
scheme. These data are presented in Tables I-IV at representative points. Since 
4 is symmetric about the origin, we need only list 4 at positive values of x. 

As can be seen, 4(x) decreases as h increases. Thus, d(x) can be written 

d(x) = 2 #n(X) A-“. (12) 
?kl 

Substituting this into Eq. (1 l), with f(x) = x2 and 01 = 4, we obtain 

il &(X> A-” = x2 - f X-n+1 1-1 $4%(y) / x - y j-2 dy. (13) 
n=l 

Equating the coefficients of like powers of h, we obtain, from the h” term, 

(14) 

Auer and Gardner [6] have shown how to solve equations of this type. They find 

#l(X) = (%0/3%-)(4x2 - 1) * (1 - x2)--1/4. W> 

Thus, for large X, 

d(x) N (4/2/3xX)(4x2 - 1) * (1 - x2)-1/4. (15b) 

In Table IV, we also include the values of b(x) from Eq. (15b) for h = 200. 
As can be seen, all three methods agree with each other quite well, and from 

Table IV, they all agree well with the analytic result; ours being slightly better 
near the singularities of 4 at &-1 than the other two. 

We can find a corrected value of 4 for large, but finite X, by taking the X-l term 
in the expansion of Eq. (13). We obtain 

VW = - fl $2(Y) I x - y I-l/2 dy, (16) 
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TABLES l-IV 

Selected Values of 4(x) Using a 20-Point Gauss-Legendre Quadrature as Obtained 
by Ullman’s, Schlitt’s, and Our Method for Various Values of X 

4(x) analytic 
4(x) present f0rX-t co 

x 4(x) Ullman 4(x) Schlitt method uncorr. corr. 

TABLE I. h = 0.5 

.99313 .63303 .63130 .62997 

.96397 55114 54817 .54650 

.74633 .25311 .25121 .24995 

51087 .06767 .06737 .0663 1 

.07653 - .07907 - .07790 - .07882 

TABLE II. h = 5.0 

.99313 .19322 .19148 .19018 

.96397 .13553 .13346 .13112 

.74633 .04332 .04269 .04209 

.51087 .00358 .00369 .00332 

.07653 - .02496 - .02429 --.02456 

TABLE III. h = 20 

.99313 .06127 .06049 .05998 

.96397 .03873 .03803 .02695 

.74633 .01135 .01174 .01099 

.51087 .00049 JO054 .00044 

.07653 -.00718 - .00697 -.00704 

TABLE IV. X = 200 

.99313 .00671 JO661 JO655 .00646 JO639 

.96397 .00404 .00396 .00382 .00395 .00393 

.74633 .00115 .00113 .OOlll .00113 .00113 

51087 .00003 .00004 .00003 .00004 .00005 

.07653 --.00075 - .00073 -.00074 -.00073 -.00073 
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where &(x) is given in Eq. (Isa). Rather than attempting to solve this equation, 
we made a numerical estimate of &/X2, by solving Eq. (I 1) with h --f --h. Referring 
to Eq. (12) for large h, 

so that 

bAW ‘v 1GlWl~ + $2(x>/~2. (18) 

This estimated corrected value of & is also listed in Table IV. 
In [l], Schlitt has presented values for the above function at values of x contained 

in the 40- and go-point Gauss-Legendre sets of integration points. We have noted 
that our method does not restrict the researcher to a fixed set of data points. To 
illustrate this, we solve the above problem using a data set constructed out of 
various points at which results already exist. 

We first constructed a data set by embedding the five points reported in [l] 
(hereafter called the Schlitt points) into the 20-point Gauss-Legendre set. The 
results are presented in Tables V-VIII for h = 0.5, 5, 20, and 200. As can be seen 
from these tables, the results compare reasonably well with Schlitt’s and with the 
results reported in Tables I-IV. However, near the singularities of $, the results 
tend to be somewhat inaccurate; these inaccuracies being larger for larger values 
of h (see, for example, the results at x = .99313 for various values of A). For this 
reason, in discussing improvements of the method, we will report results for 
h = 200, only. 

Our first attempt at removing these inaccuracies involved creating a data set 
starting with the Schlitt points. We then constructed other data points equally 
spaced between two adjacent Schlitt points. We found this method to be unsatis- 
factory. For example, in Table IX, we report the C$ values obtained at the Schlitt 
points using the above data set with three additional, equally spaced points between 
the Schlitt points. Using a data set with seven equally spaced points between the 
Schlitt points yielded results essentially identical to those in Table IX. As can be 
seen, although the results are not extremely bad, they are not very accurate, 
particularly near x = + 1. 

The results shown in the first nine tables indicate that, at least for this problem, 
using an augmented Gauss-Legendre data set is more accurate than an equally 
spaced set of points. The inaccuracies in Tables V-VIII are due to embedding points 
which are too close to the singularities in d(x). 

As a next attempt, we returned to the 20-point Gauss data set, embedding in it 
the four Schlitt points that were smaller than .99313 (the largest abscissa of the 
20-point set). With this data set we obtained remarkably accurate results. This 
is illustrated in Table X. 

581116/4-5 
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Finally, we considered a data set created from the 40 Gauss-Legendre points. 
Into this, we embedded the five 20-point abscissas reported in Tables I-IV, plus 
the two smaller go-point abscissas used by Schlitt. These excellent results are 
shown in Table XI. In particular, the reader should note the accuracy of this result 
near the singularity. We have also solved the problem with the largest go-point 

TABLES V-VIII 

Selected Values of (x) Using Our Method with a Data Set Formed by Embedding 
the Schlitt Points into the 20-Point Gauss-Legendre Set, for Various Values of A. 

x 

$(x) Schlitt 
from [l], 

Tables I-IV 

4(x) our method 
Without Schlitt 

With Schlitt points points in 20-point 
in 20-point set set 

TABLE V. h = 0.5 

.99955 .67454 .67256 

.99313 .63130 .62929 .62997 

.96397 .54817 .54646 .54650 

.77831 .28399 .28312 

.74633 .25121 .24952 .24995 
51087 .06737 .06679 .0663 1 
.50280 .06254 .06149 
.I1608 -.07376 -.07417 
.07653 - .07790 - .07847 -.07882 
-01951 -.08100 -.08148 

.99955 .25986 

.99313 .19148 

.96397 .13346 

.77831 .05028 

.74633 .04269 

.51087 .00369 

.50280 .00271 

.11608 - .02354 

.07653 - .02429 

.01951 - .02490 

TABLE VI. /\ = 5.0 
- 

.25237 

.18483 .I9018 

.13059 .13112 

.04998 

.04158 .04209 

.00363 .00332 

.00216 
-.02363 
- .02448 - .02456 
- .02503 
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x 

4(x) Schlitt 
from [1], 

Tables I-IV 

Q(x) our method 
Without Schlitt 

With Schlitt points points in 20-point 
in 20-point set set 

TABLE VII. X = 20 

.99955 .I0163 .09459 

.99313 .06049 .05576 .05998 

.96391 .03803 .03676 .02695 

.77831 .01327 .01320 

.74633 .01174 .01080 .01099 

.51087 .00054 .00055 .ooo44 

SO280 MO27 .0#08 

.11608 - Xl0677 -.00679 

.07653 - .00697 - .00703 - .00704 

.01951 - .00714 -.00717 

Table VIII. h = 200 

.99955 .01298 .01157 

.99313 .00661 JO585 

.96397 JO396 .00381 

.77831 .00135 .00134 

.74633 .00113 .00109 

.51087 .oooo4 .oooo4 

.50280 .OOOOl -.OOOOl 

.11608 -.@0071 -.00071 

.07653 - xl0073 -.00073 

.01951 -.00075 -JO075 

.00655 

.00382 

.OOlll 

.00003 

- xl0074 

corr. analytic 
value. 

.00639 

.00393 

.00113 

.00005 

-.00073 

abscissa (.99955) added to this augmented 40-point data set. This is also reported 
in’ Table XI. We note that these results are also quite satisfactory. 

A comparison of Tables X and XI also shows that our method converges to an 
accurate result quite well with an augmented 40-point data set. To illustrate this, 
we have compiled data from Tables IV and XI which present values of 4 for 
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TABLE IX 

4(.x) Using a Data Set with Equally Spaced Points between 
Schlitt Points, for h = 200 

x 

.999.55 

.7183 1 

SO280 

.I1608 

.01951 

4(x) at Schlitt points 4(x) at Schlitt points 
from [l ] from equal spacing data set 

___ 

.01298 AI0853 

.0013.5 .00129 

.00001 - .00002 
--.00071 -.00072 

-BOO75 -.00076 

TABLE X 

4(x) using a Data Set Created by Embedding the Four Smaller 
Schlitt Points into the 20-Point Gauss-Legendre Set 

x 

.99313 

.96397 

.77831 

.74633 

.51087 

.50280 

.11608 

.07653 

.01951 

4(x) at Schlitt C(x) using augmented 
points from [I] 20-point Gauss set 

.00661 .00655 

.00396 JO382 

.00135 .00134 

.00113 .00109 

.00004 .00004 

.00001 -.00001 

- .00071 -.00071 
~ .00073 - BOO73 

- .00075 - .00075 

I$@) using 20-point 
Gauss set only 

.00655 

.00382 

.OOlll 

.00003 

- .00074 

X = 200 using a 20-point data set and an augmented 40-point data set. These 
are compared to the large h analytic solution, corrected by addition of the second 
(1/X2) term. As can be seen, the convergence of the method is quite good. Using 
the augmented 40-point data set, the results are essentially identical to the analytic 
solution. These data are presented in Table XII. 



SINGULAR INTEGRAL EQUATIONS 381 

TABLE XI 

4(x) Using a Data Set Created by Embedding All 20-Point Abscissas Shown 
in Tables I-IV, and Some 80 Schlitt Points Embedded into 40-Point 

Gauss Set 

x A.(-4 M-4 

.99955 .01298 .01301 

.99313 .00661 .00639 .00635 .00639 

.96397 .00396 .00394 .00393 .00393 

.77831 .00135 .00135 .00135 

.74633 .00113 .00113 .00113 .00113 

.51087 .00004 .00004 .00004 .00005 

.50280 .OOOOl .OOOOl .OOOOl 

.11608 -.00071 - .0007 1 -.00071 

.07653 - .00073 - .00073 -.00073 -.00073 

.01951 -.00075 -SK@75 - .00075 

Note. 4, is data taken from [l] and Table IV; & is obtained with augmented 
data set with largest go-point abscissa ommitted; +c is obtained with augmented 
data set including largest go-point abscissa; & is corrected analytic value taken 
from Table IV. 

TABLE XII 

A Comparison of Q Values Using a 20-Point and an Augmented 40-Point Data 
Set, Illustrating the Convergence of the Present Method of Solution 

X 4 20 A,+ &aytdWith correction) 

.99313 JO655 .00635 .00639 

.96397 .00382 .00393 .00393 

.74633 .OOlll .00113 .00113 

.51087 .00003 .00004 .00005 

.07653 -.00074 - .00073 -.00073 

IV. SUMMARY AND CONCLUSIONS 

We have presented a method for solving linear integral equations which is 
directly applicable to weakly singular equations. The scheme has the advantage 
over other methods in that one can obtain the value of the unknown function, 
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directly, at any desired point. In other methods, one is restricted to direct results 
only at values of abscissas contained in a predescribed data set. 

It is also possible that a technique of this type is applicable to integral equations 
which have kernels with pole singularities. An investigation is currently under way 
with such equations. They will be reported when completely available. 
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